计算方式 计算方式有哪几种
计算方式又称“数值分析”。是为各种数学问题的数值解答研究提供最有效的算法。主要内容为函数逼近论,数值微分,数值积分,误差分析等。常用方法有迭代法、差分法、插值法、有限元素法等。
文章目录:

一、计算方式
计算方式又称“数值分析”。是为各种数学问题的数值解答研究提供最有效的算法。
主要内容为敏兆函数逼近论,数值微分,数值积分,误差分析等。

常用方法有迭代法、差分法、插值法、有限元素法等。现代的计算方法还要求适应电子计算机的特点。数值分析即“答配计清拿指算方式”。
二、加减乘除的计算方法
先乘除,后加减,有括号的先算括号里的.

整数加、减计算法则:
1)要把相同数位对齐,再把相同计数单位上的数相加或相减;
2)哪一位满十就向前一位进。
2、小数加、减法的计算法则:
1)计算小数加、减笑搏改法,先把各数的小数点对齐(也就是把相同数位上的数对齐),
2)再按照整数加、减法的法则进行计算,最后在得数里对齐横线上的小数点点上小数点。
(得数的小数部分末尾有0,一般要把0去掉。)
3、分数加、减计算法则:
1)分母相同时,只把分子相加、减,分母不变;
2)分母不相同时,要先通分成同分母分数再相加、减。
4、整数乘法法则:
1)从右起,依次用第二个因数每位上的数去乘第一个因数,乘到哪一位,得数的末尾就和第二个因数的哪一位对个因数的哪一位对齐;
2)然后把几次乘得的数加起来。
(整数末尾有0的乘法:可以先把0前面的数相乘,然后看各因数的末尾一共有几个0,就在乘得的数的末尾添写几个0。)
5、小数乘法法则:
1)按整数乘法的法则算出积;
2)再看因数中一共有几位小数,就从得数的右边起数出几位,点上小数点。
3)得数的小数部分末尾有0,一般要把0去掉。
6、分数乘法法则:把各个分数的分子乘起来作为分子,各个分数的分母相乘起来作为分母,(即乘上这个分数的倒数),然后再约分。
7、整数的除法法则
1)从被除数的商位起,先看除数有几位,再用除数试除被除数碰判的前几银孝位,如果它比除数小,再试除多一位数;
2)除到被除数的哪一位,就在那一位上面写上商;
3)每次除后余下的数必须比除数小。
8、除数是整数的小数除法法则:
1)按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;
2)如果除到被除数的末尾仍有余数,就在余数后面补零,再继续除。
9、除数是小数的小数除法法则:
1)先看除数中有几位小数,就把被除数的小数点向右移动几位,数位不够的用零补足;
2)然后按照除数是整数的小数除法来除
10、分数的除法法则:
1)用被除数的分子与除数的分母相乘作为分子;
2)用被除数的分母与除数的分子相乘作为分母
三、15种巧算方法
1.方法1.两位数加两位数的进位加法。 口诀: 加9要减1,加8要减2,加7要减3,加6要减4,加5要减5,加4要减6,加3要减7,判伏燃巧加2要减8,加1要减9。 (注: 口决中的加几都是说个位上的数)。2.方法2.两位数减两位数的退位减法。 口决: 减9要加1,减8要加2,减7要加3,减6要加4,减5要加5,减4要掘段携加6,减3要加7,减2要加8,减1要加9。
凑整巧算”——运用加法的交换律、结合律进行计算。
运森行用乘法的交换律、结合律进行简算。
运用减法的性质进行简算,同时注意逆进行。
运用除法的性质进行简算 (除以一个数,先化为乘基春岩以一个数的倒数,再分配)。
运用乘法分配律进行简算。
混合运算(根搏御据混合运算的法则)。
具体解释:
一、“凑整巧算”——运用加法的交换律、结合律进行计算。
凑整,特别是“凑十”、“凑百”、“凑千”等,是加减法速算的重要方法。
加法交换律
定义:两个数交换位置和不变,
公式:A+B =B+A,
例如:6+18+4=6+4+18
加法结合律
定义:先把前两个数相加,或者先把后两个数相加,和不变。
公式:(A+B)+C=A+(B+C),
例如:(6+18)+2=6+(18+2)
引申——凑整
例如:1.999+19.99+199.9+1999
=2+20+200+2000-0.001-0.01-0.1-1
=2222-1.111
=2220.889
二、运用乘法的交换律、结合律进行简算。
乘法交换律
定义:两个因数交换位置,积不变.
公式:A×B=B×A
例如:125×12×8=125×8×12
乘法结合律
定义:先乘前两个因数,或者先乘后两个因数,积不变。
公式:A×B×C=A×(B×C),
例如:30×25×4=30×(25×4)
三、运用减法的性质进行简算,同时注意逆进行。
减法
定义:一个数连续减去两个数,可以先把后两个数相加,再相减。
公式:A-B-C=A-(B+C),【注意:A-(B+C)= A-B-C的运用】
例如:20-8-2=20-(8+2)
四、运用除法的性质进行简算 (除以一个数,先化为乘以一个数的倒数,再分配)。
除法
定义:一个数连续除去两个数 ,可以先把后两个数相乘,再相除。
公式:A÷B÷C=A÷(B×C),
例如:20÷8÷1.25=20÷(8×1.25)
定义:除数除以被除数,把被除数拆为两个数字连除(这两个数的积一定是这个被除数)
例如:64 ÷16=64÷8÷2=8÷2=4
五、运用乘法分配律进行简算。
乘法分配律
定义:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。
公式:(A+B)×C=A×C+B×C
例如;2.5×(100+0.4)= 2.5×100+2.5×0.4= 250+1= 251
六、混合运算(根据混合运算的法则)。
学会数字搭配( 0.5和2、0.25和4、0.125和8)
以上内容由火焰鸟网站(dk.hynjr.com)小编收集整理于互联网,目的在于传递更多信息,并不代表本网赞同其观点。其内容真实性、完整性不作任何保证或承诺。如若本网有任何内容侵犯您的权益,请及时联系我们,本站将会在24小时内处理完毕。
本文由网友自发上传,如有侵权,联系删除。